翻訳と辞書
Words near each other
・ Pushpa Vimana
・ Pushpadana Girls' College, Kandy
・ Pushpadanta
・ Pushpagiri
・ Pushed to the Limit
・ Pusher
・ Pusher (1996 film)
・ Pusher (2012 film)
・ Pusher (boat)
・ Pusher (film series)
・ Pusher (railway station attendant)
・ Pusher (tennis)
・ Pusher (The X-Files)
・ Pusher 3
・ Pusher centrifuge
Pusher configuration
・ Pusher II
・ Pusher Love Girl
・ Pusher trailer
・ Pusherman
・ Pusheta Township, Auglaize County, Ohio
・ Pushforward
・ Pushforward (differential)
・ Pushforward (homology)
・ Pushforward measure
・ Pushihe Pumped Storage Power Station
・ Pushim
・ Pushin Forward Back
・ Pushin' Against a Stone
・ Pushin' Me Away


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pusher configuration : ウィキペディア英語版
Pusher configuration

In a craft with a pusher configuration (as opposed to a tractor configuration), the propeller(s) are mounted behind their respective engine(s). According to British aviation author Bill Gunston, a "pusher propeller" is one mounted behind the engine, so that the drive shaft is in compression.
Pusher configuration describes this specific (propeller or ducted fan) thrust device attached to a craft, either aerostat (airship) or aerodyne (aircraft, WIG, paramotor, rotorcraft) or others types such as hovercraft, airboat and propeller-driven snowmobiles.〔Such as Propeller-Driven Sleighs () or Aerosani
"Pusher configuration" also describes the layout of a fixed-wing aircraft in which the thrust device has a pusher configuration. This kind of aircraft is commonly called a pusher. Pushers have been designed and built in many different layouts, some of them quite radical.
==History==





The rubber-powered "Planophore", designed by Alphonse Pénaud in 1871, was an early successful model aircraft with a pusher propeller.
Many early aircraft (especially biplanes) were "pushers", including the Wright Flyer (1903), the Santos-Dumont 14-bis (1906), the Voisin-Farman I (1907) and the Curtiss Model D used by Eugene Ely for the first ship landing on January 18, 1911. Henri Farman's pusher Farman III and its successors were so influential in Britain that pushers in general became known as the "Farman type".〔The Royal Aircraft Factory referred to all the early pushers they built as Farman Experimentals - or F.E.s. Most successful examples were the Royal Aircraft Factory F.E.2 and Royal Aircraft Factory F.E.8〕 Other early pusher configurations were minor variations on this theme.
The classic "Farman" pusher had the propeller "mounted (just) behind the main lifting surface" with the engine fixed to the lower wing or between the wings, immediately forward of the propeller in a stub fuselage (that also contained the pilot) called a nacelle. The main difficulty with this type of pusher design was attaching the tail (empennage); this needed to be in the same general location as on a tractor aircraft but its support structure had to avoid the propeller. The earliest examples of pushers relied on a canard but this has serious aerodynamic implications that the early designers were unable to resolve. Typically, mounting the tail was done with a complex wire-braced framework that created a lot of drag. Well before the beginning of the First World War this drag was recognized as just one of the factors that would ensure that a Farman style pusher would have an inferior performance to an otherwise similar tractor type.
The U.S. Army banned pusher aircraft in late 1914 after several pilots died in crashes of aircraft of this type 〔http://www.centennialofflight.net/essay/Dictionary/Propeller_Design/DI62.htm〕 - so from about 1912 onwards the great majority of new U.S. landplane designs were tractor biplanes; pushers (of all types) becoming regarded as old fashioned on both sides of the Atlantic. However, new pusher designs continued to be designed right up to the armistice such as the Vickers Vampire, although few new ones entered service after 1916..
At least up to the end of 1916, however, pushers (such as the Airco DH.2 fighter) were still favoured as gun-carrying aircraft by the British Royal Flying Corps because a forward-firing gun could be used without being obstructed by the arc of the propeller. With the successful introduction of Fokker's mechanism for synchronising the firing of a machine gun with the blades of a moving propeller, followed quickly by the widespread adoption of synchronisation gears by all the combatants in 1916/17, the tractor configuration became almost universally favoured and pushers were reduced to the tiny minority of new aircraft designs that had a specific reason for using the arrangement. Both the British and French continued to use pusher configured bombers, though there was no clear preference either way until 1917. Such aircraft included (apart from the products of the Farman company itself) the Voisin bombers (3,200 built), the Vickers F.B.5 "Gunbus", and the Royal Aircraft Factory F.E.2, however even these would find themselves being shunted into training roles before disappearing entirely. Possibly the last fighter to use the Farman pusher configuration was the 1931 Vickers Type 161 COW gun fighter.
During the long eclipse of the configuration the use of pusher propellers continued in aircraft which derived a small benefit from the installation and could have been built as tractors. Biplane flying boats, had for some time often been fitted with engines located above the fuselage to offer maximum clearance from the water, often driving pusher propellers to avoid spray and the hazards involved by keeping them well clear of the cockpit. The Supermarine Walrus was a late example of this layout.
The so-called push/pull layout, combining the tractor and pusher configurations (that is – with one or more propellers facing forwards and one or more others facing back) was another idea that continues to be used from time to time as a means of reducing the asymmetric effects of an outboard engine failing, such as on the Farman F.222 but at the cost of a severely reduced efficiency on the rear propellers, which were often smaller and attached to lower-powered engines as a result.
By the late 1930s the widespread adoption of all-metal stressed skin construction of aircraft meant, at least in theory, that the aerodynamic penalties that had limited the performance of pushers (and indeed any unconventional layout), were reduced; however any improvement that boosts pusher performance also boosts the performance of conventional aircraft and they remained a rarity in operational service – so the gap was narrowed but was not closed entirely.
During World War II, experiments were conducted with pusher fighters by most of the major powers. Difficulties remained, particularly that a pilot having to bail out of a pusher was liable to pass through the propeller arc. This meant that of all the types concerned, only the relatively conventional Swedish Saab 21 of 1943 went into series production. Other problems related to the aerodynamics of canard layouts, which had been used on most of the pushers, proved more difficult to resolve.〔See stability issues of the Curtiss-Wright XP-55 Ascender〕 One of the world's first ejection seats was (per force) designed for this aircraft - which later re-emerged with a jet engine.
The largest pusher aircraft to fly was the Convair B-36 of 1946, which was also the largest bomber ever operated by the United States. It had six 3,800 hp Pratt & Whitney Wasp Major radial engines mounted in the wing, each driving a pusher propeller located behind the trailing edge of the wing.
Although the vast majority of propeller-driven aircraft continue to use a tractor configuration, there has been in recent years something of a revival of interest in pusher designs: in light homebuilt aircraft such as Burt Rutan's canard designs since 1975, ultralights such as the Quad City Challenger (1983), flexwings, paramotors, powered parachutes, and autogyros. The configuration is also often used for unmanned aerial vehicles, due to requirements for a front fuselage free of any engine interference.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pusher configuration」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.